Saturday, July 28, 2012

Recent Silence Summer 2012




Active disassembly, from ActiveDisassembly.com 



Hey all,


It's been quiet for a few weeks. We've been busy working on a couple of new projects and moving office.
We should have something new in the upcoming months. I'll post a few features before then hi-lighting some of the particulars we're taking further in addition to these new projects.
Admin: This can also be viewed on this blog.
________________________________________________________________

FYI: Various related this blog:

Shape Memory Material Blog (also Smart Materials)
Design for Disassembly Blog   but it's a cross blog topic:

What "could be" .... current R&D and master website:
Dr. Joseph Chiodo

Recent Silence Summer 2012


Monday, June 11, 2012

Smart materials use in active disassembly paper 2012



Smart materials use in active disassembly, from ActiveDisassembly.com

Document Information:
Title:Smart materials use in active disassembly
Author(s):Joseph Chiodo, (Active Disassembly Research Ltd, London, UK), Nick Jones, (Active Disassembly Research Ltd, London, UK)
Citation:Joseph Chiodo, Nick Jones, (2012) "Smart materials use in active disassembly", Assembly Automation, Vol. 32 Iss: 1, pp.8 - 24
Keywords:AutomationMaterials
Article type:General review
DOI:10.1108/01445151211198683 (Permanent URL)
Publisher:Emerald Group Publishing Limited
Abstract:
Purpose – Smart materials (SMs) have the potential for facilitating active disassembly (AD). Select SMs are used in the design of devices to aid product disassembly. The purpose of this paper is to compare different AD approaches and highlight future work and potential.

Design/methodology/approach – This work is a survey of the collated AD research employing only Smart and “made Smart” materials work from various published work in the field from companies and academia since its original invention. The introduction gives general discussion of AD with cost implications and how the technology could offer very lean dismantling. An overview of the history of the work is given with the context of the implications for the need for a technology like AD to retain critical materials.

Findings – Besides a survey to date, comparisons were made of each AD technology application highlighting advantages and challenges. Comparisons were also made prior to this in alternative disassembly strategies to give context to the potential usefulness of the technology.

Practical implications – Only AD with SMs or “made Smart” were highlighted with some considerations for potential candidates.

Originality/value – A survey of AD work only employing SMs and “made-Smart” materials to date. Comparisons of each AD application were made highlighting advantages and challenges. Comparisons were made between AD and alternative disassembly strategies to give context to the potential usefulness of the technology. The conclusion included an overview of work with consideration for future work. A candidate technology with the most potential was discussed.




The paper can be accessed from:


Emerald Journal: Assembly Automation, ISSN: 0144-5154


Friday, June 1, 2012

ADSM from China

ADSM from China

A very recent publication just released in China on 'Active Disassembly' (AD) and 'Active Disassembly using Smart Materials' (ADSM).


Zhifeng Liu, Xinyu Li, Huanbo Cheng and Yifei Zhan 
Hefei University of Technology 
China

Basic review of the paper:

The first third of the paper is centred around work conducted by Chiodo with further work conducted by others with assessments. Much of this work is by Liu, Li, Cheng and Zhan. 


“This chapter discusses the principles of multi-step active disassembly, proposes the method of products multi-step active disassembly and divides the step of product parts according to the step division principle of multi-step active disassembly products. In addition, this chapter also proposes step division process of multi-step active disassembly products and determines parts in each step according to the process. Materials which have the same trigger medium and different trigger strength are used as active disassembly material, ensuring that trigger strength (such as temperature, magnetic field strength, etc) of active disassembly device which is in different disassembly step forms gradient. Trigger strength of active disassembly device increases along with the disassembly step from low to high. The joints which are in the same disassembly step use the active disassembly devices which have the same trigger strength. In different disassembly steps, install active disassembly parts according to the gradient. Lastly, disassemble the products by sending it to the different work areas.”



Sunday, May 27, 2012

Collecting online Active Disassembly papers - 1